2,977 research outputs found

    Intelligence, Control and the Artificial Mind

    Get PDF
    Artificial intelligence and cognitive science must look at the world of industrial-process control to find the technological reifications of the concept of mind

    The Epistemic Control Loop

    Get PDF
    In the ICEA project we are concerned with the extraction of general designs from rat brains

    Consciosusness in Cognitive Architectures. A Principled Analysis of RCS, Soar and ACT-R

    Get PDF
    This report analyses the aplicability of the principles of consciousness developed in the ASys project to three of the most relevant cognitive architectures. This is done in relation to their aplicability to build integrated control systems and studying their support for general mechanisms of real-time consciousness.\ud To analyse these architectures the ASys Framework is employed. This is a conceptual framework based on an extension for cognitive autonomous systems of the General Systems Theory (GST).\ud A general qualitative evaluation criteria for cognitive architectures is established based upon: a) requirements for a cognitive architecture, b) the theoretical framework based on the GST and c) core design principles for integrated cognitive conscious control systems

    A Model of Emotion as Patterned Metacontrol

    Get PDF
    Adaptive systems use feedback as a key strategy to cope with uncertainty and change in their environments. The information fed back from the sensorimotor loop into the control architecture can be used to change different elements of the controller at four different levels: parameters of the control model, the control model itself, the functional organization of the agent and the functional components of the agent. The complexity of such a space of potential configurations is daunting. The only viable alternative for the agent ?in practical, economical, evolutionary terms? is the reduction of the dimensionality of the configuration space. This reduction is achieved both by functionalisation —or, to be more precise, by interface minimization— and by patterning, i.e. the selection among a predefined set of organisational configurations. This last analysis let us state the central problem of how autonomy emerges from the integration of the cognitive, emotional and autonomic systems in strict functional terms: autonomy is achieved by the closure of functional dependency. In this paper we will show a general model of how the emotional biological systems operate following this theoretical analysis and how this model is also of applicability to a wide spectrum of artificial systems

    Principles for Consciousness in Integrated Cognitive Control

    Get PDF
    In this article we will argue that given certain conditions for the evolution of bi- \ud ological controllers, these will necessarily evolve in the direction of incorporating \ud consciousness capabilities. We will also see what are the necessary mechanics for \ud the provision of these capabilities and extrapolate this vision to the world of artifi- \ud cial systems postulating seven design principles for conscious systems. This article \ud was published in the journal Neural Networks special issue on brain and conscious- \ud ness

    Emotion and Metacontrol

    Get PDF
    In the ICEA Project we are concerned with the extraction of general designs from rat brains. We are interested in designs that capture the core integrational aspects of emotion and cognition

    Methodological Flaws in Cognitive Animat Research

    Get PDF
    In the field of convergence between research in autonomous machine construction and biological systems understanding it is usually argued that building robots for research on auton- omy by replicating extant animals is a valuable strategy for engineering autonomous intelligent systems. In this paper we will address the very issue of animat construction, the ratio- nale behind this, their current implementations and the value they are producing. It will be shown that current activity, as it is done today, is deeply flawed and useless as research in the science and engineering of autonomy

    Against Animats

    Get PDF
    Animats are artificial animals, a contraction of anima-materials. The term includes physical robots and virtual simulations. Animat research, a subset of Artificial Life studies, has become rather popular since Rodney Brooks' seminal paper "Intelligence without representation". The word was coined by S.W. Wilson in 1991, in the first proceedings of the Simulation of Adaptive Behaviour, which was also called From Animals to Animats

    Robust control strategies for unstable systems with input/output delays

    Full text link
    Los sistemas con retardo temporal aparecen con frecuencia en el ámbito de la ingeniería, por ejemplo en transmisiones hidráulicas o mecánicas, procesos metalúrgicos o sistemas de control en red. Los retardos temporales han despertado el interés de los investigadores en el ámbito del control desde finales de los años 50. Se ha desarrollado una amplia gama de herramientas para el análisis de su estabilidad y prestaciones, especialmente durante las dos últimas décadas. Esta tesis se centra en la estabilización de sistemas afectados por retardos temporales en la actuación y/o la medida. Concretamente, las contribuciones que aquí se incluyen tienen por objetivo mejorar las prestaciones de los controladores existentes en presencia de perturbaciones. Los retardos temporales degradan, inevitablemente, el desempeño de un bucle de control. No es de extrañar que el rechazo de perturbaciones haya sido motivo de estudio desde que emergieron los primeros controladores predictivos para sistemas con retardo. Las estrategias presentadas en esta tesis se basan en la combinación de controladores predictivos y observadores de perturbaciones. Estos últimos han sido aplicados con éxito para mejorar el rechazo de perturbaciones de controladores convencionales. Sin embargo, la aplicación de esta metodología a sistemas con retardo es poco frecuente en la literatura, la cual se investiga exhaustivamente en esta tesis. Otro inconveniente de los controladores predictivos está relacionado con su implementación, que puede llevar a la inestabilidad si no se realiza cuidadosamente. Este fenómeno está relacionado con el hecho de que las leyes de control predictivas se expresan mediante una ecuación integral. En esta tesis se presenta una estructura de control alternativa que evita este problema, la cual utiliza un observador de dimensión infinita, gobernado por una ecuación en derivadas parciales de tipo hiperbólico.Time-delay systems are ubiquitous in many engineering applications, such as mechanical or fluid transmissions, metallurgical processes or networked control systems. Time-delay systems have attracted the interest of control researchers since the late 50's. A wide variety of tools for stability and performance analysis has been developed, specially over the past two decades. This thesis is focused on the problem of stabilizing systems that are affected by delays on the actuator and/or sensing paths. More specifically, the contributions herein reported aim at improving the performance of existing controllers in the presence of external disturbances. Time delays unavoidably degrade the control loop performance. Disturbance rejection has been a matter of concern since the first predictive controllers for time-delay systems emerged. The key idea of the strategies presented in this thesis is the combination of predictive controllers and disturbance observers. The latter have been successfully applied to improve the disturbance rejection capabilities of conventional controllers. However, the application of this methodology to time-delay systems is rarely found in the literature. This combination is extensively investigated in this thesis. Another handicap of predictive controllers has to do with their implementation, which can induce instability if not done carefully. This issue is related to the fact that predictive control laws take the form of integral equations. An alternative control structure that avoids this problem is also reported in this thesis, which employs an infinite-dimensional observer, governed by a hyperbolic partial differential equation.Sanz Díaz, R. (2018). Robust control strategies for unstable systems with input/output delays [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/111830TESI

    Temporal disaggregation methods of economic time series

    Get PDF
    corecore